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umans are intensely
social, and thus it is

reasonable to assume that
a large proportion of the
human cognitive archi-
tecture is dedicated to
social tasks (see FISKE

1991; HIRSCHFELD/GEL-

MAN 1994; LESLIE 1987;
TOOBY/COSMIDES 1992).
The investigation of
social cognitive mecha-
nisms is not easy, how-
ever, because they are
sensitive to contextual
variation, and because
multiple mechanisms are
simultaneously engaged
by the same social task
(TOOBY/COSMIDES 1992).
As a result, many of the
most powerful concep-
tual tools developed by
cognitive scientists have
not been immediately
useful to social psycholo-
gists (but see HASTIE 1988,
and SMITH/ZARATE 1992,
for applications to person
perception and simple
social judgement). Recent advances in evolutionary
psychology can help social psychologists develop a
rigorous top-down approach to social cognition by
adding a layer of analysis to the ‘top’ of the tradi-
tional approach employed in cognitive science.

In this article, we first re-introduce to psycholo-
gists the multilevel approach often used in cognitive
science, and we argue that this approach can
strengthen social psychological research and theory.
Second, we argue that the effective use of a multi-
level approach in social domains will require the ad-

dition of an evolutionary
level of analysis. Finally,
we argue that current
work in evolutionary psy-
chology, especially work
on social phenomena,
can be made more rigor-
ous if evolutionary theory
is used in conjunction
with the multilevel ap-
proach of cognitive sci-
ence.

In his work on visual
perception, David MARR

(1977, 1982; MARR/POG-

GIO 1977) proposed that
any information process-
ing system can be under-
stood at three levels of
analysis (see Table 1). The
first level, the computa-
tional theory, specifies
the problem to be solved,
the information available
for solving the problem,
and the sub-tasks that
must be completed to
solve the problem, given
the informational con-
straints imposed on the

system. Developing a computational theory entails
decomposing a larger problem (e.g., visual percep-
tion) into the sub-problems (e.g., edge detection,
computation of surface orientation) that must be
solved, in a real-world environment, to accomplish
the larger task.

The second level, the algorithm, specifies the
rules used by the system for solving the problem.
The algorithm is specified in abstract terms, inde-
pendent of the physical system on which it is im-
plemented. The algorithm specifies the nature of
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the input into the system, in addition to the oper-
ations performed by the system that solve the sub-
problems specified by the computational theory
(e.g., for edge detection, computing the second de-
rivative of light intensity, and using zero-crossings
to indicate edges; MARR 1982). 

The third level, the implementation (or hard-
ware), concerns the physical instantiation of the
algorithms specified at the second level. Detailing
algorithmic implementation amounts to a descrip-
tion of the mechanical processes by which the sys-
tem carries out the operations specified abstractly
at the second level (e.g., for edge detection, 2 gen-
iculate X-cells, one on-center and one off-center,
connected by an ‘and’ gate; MARR 1982).

For cognitive scientists, and most psychologists,
a primary goal is to understand the abstract rules
according to which the mind works. This corre-
sponds to MARR’s second level of analysis and cap-
tures what psychologists mean by cognition—the
ways in which information is used by the mind. The
algorithmic level of analysis captures a unique class
of generalizations not reflected in purely physical
or purely behavioral descriptions. It is the algorith-
mic level of analysis that is typically of primary in-
terest to psychologists (CHOMSKY 1957; FODOR

1968; PYLYSHYN 1984).
According to MARR (1977, 1982), the most prof-

itable strategy for identifying the algorithms used
by the mind is to adopt a top-down strategy by first
developing a computational theory for the domain
in question. Careful consideration of the specific
sub-tasks required in a domain, together with a con-
sideration of the information available for accom-

plishing these tasks, limits the potentially viable
algorithms. Only algorithms capable of successfully
completing the series of required sub-tasks, using
information available to the system in real-world
situations, are worth consideration. Employing a
computational theory prevents the researcher from
considering the huge array of algorithms that are
impossible given the real-world constraints on the
system.

The set of viable algorithms is relatively uncon-
strained, however, by the physical hardware on
which the algorithms are implemented. Given a
complete description of the physical elements of a
system, in addition to a complete description of
how those physical elements are connected, the re-
searcher remains uninformed as to the abstract
rules that are instantiated in that physical system.
In MARR’s words:

“Although algorithms and mechanisms are em-
pirically more accessible, it is the top level, the level
of computational theory, which is critically impor-
tant from an information-processing point of view.
The reason for this is that the nature of the compu-
tations that underlie perception depends more
upon the computational problems that have to be
solved than upon the particular hardware in which
their solutions are implemented. To phrase the
matter another way, an algorithm is likely to be
understood more readily by understanding the na-
ture of the problem being solved than by examin-
ing the mechanisms (and the hardware) in which it
is embodied” (MARR 1982, p27).

A simple thought experiment illustrates MARR’s
point. Imagine a giant machine of some unknown
but definite function. Further imagine that this ma-
chine is constructed entirely of Tinker Toys. Each
piece is made of wood, and is one of a small set of
types (e.g., cylindrical with holes, or long and stick-
like). What algorithms are instantiated in this ma-
chine? That is, what are the rules that guide its oper-
ation? The answers to these questions are relatively
unconstrained by a physical examination of the ma-
chine or by a description of its specific movements
or ‘behaviors’. The set of possible rules guiding the
operation of this machine is substantially reduced,
however, if we first formulate a hypothesis about the
problem the machine solves: It plays, and never loses
at, tic–tac–toe (this machine does exist; DEWDNEY

1989). This piece of information now constrains the
possible algorithms instantiated in the machine to
such a degree that only a small number are viable.
For example, algorithms such as, “Cooperate on the
first move. Then defect if your partner defects, and

I. Computational theory (Task Analysis)

What is the goal of the computation, why is the computa-
tion appropriate, and what is the logic of the strategy by
which the computation can be carried out?

II. Algorithm (Cognition)

How can the computational theory be implemented? In
particular, what is the representation for the input and out-
put, and what is the algorithm for the transformation of
input to output?

III. Implementation (Hardware)

How can the algorithm and representation be realized phys-
ically?

Table 1: MARR’s Three Levels of Analysis. 
Adapted from MARR (1982, p25).
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cooperate if your partner cooperates,” and “Flip pan-
cakes after cooking for two minutes,” are no longer
worth consideration. These algorithms are techni-
cally possible given the physical medium involved
but are unrelated to the machine’s function and so
represent ‘blind alleys’ of investigation. However,
this machine may include a system for representing
the possible configurations of X’s and O’s in a 3 by
3 environment, and may perhaps embody a set of
strategic algorithms such as, “If two of your oppo-
nent’s symbols are in adjacent squares, place your
next symbol in the next successive square,” and “If
moving first, always place your symbol in the center
square”. These algorithms embody solutions to spe-
cific sub-tasks necessary to accomplish the larger
goal—never losing at tic–tac–toe.1

MARR’s (1982) computational approach revolu-
tionized theories of visual processing, in particular,
and cognitive science, in general. It provided a
framework for understanding perceptual processes
through a careful consideration of the demands of
the problem. MARR’s ideas, however, have not pen-
etrated social psychological circles to the same de-
gree. One possible reason is that MARR (1982) and
others concerned primarily with perceptual pro-
cesses have had it comparatively easy in applying a
computational approach. The existence of a percep-
tual process is evident and need not be inferred.
Furthermore, once a perceptual process is identi-
fied, a task analysis can proceed ‘from the ground
up’. MARR (1982) relied heavily on observation
(what features are, and are not, detectable by peo-
ple) and intuition (for example, to see a table, we
must perceive its edges and its surfaces) to develop
his computational theory of vision. Operations
were identified as ‘appropriate’ based on intuitions
about the relevant processes and relations between
them. For example, MARR explains that the reason
a cash register uses addition, rather than multipli-
cation, is that “the rules that we intuitively feel to be
appropriate for combining the individual prices in
fact define the mathematical operation of addi-
tion” (1982, p22, emphasis added). And so the ad-
dition of prices would be part of any computational
theory of cash registers. Thus, observation and in-
tuition give the perception researcher an initial
foothold from which to identify sub-processes, and
the analysis can then proceed ‘from the top down’,
with the computational theory providing con-
straints on possible algorithms (see Figure 1).

Developing computational theories in social do-
mains is not as straightforward. Humans pursue
friendships, form social hierarchies, and become ro-

mantically involved with others, for example. These
social phenomena are accompanied by a baffling ar-
ray of psychological processes, but even the exist-
ence of these processes (unlike most perceptual pro-
cesses) is not always immediately evident.
Furthermore, it is not always clear when a social
agent is operating successfully, or even what an ap-
propriate metric for ‘success’ is (Is success equivalent
to subjective happiness? To the maximization of
pleasure? To the minimization of pain?). Nor is it
intuitively obvious what sub-problems must be
solved by a social agent in order to be successful
(What must we do to ascend successfully a social
hierarchy?).

Intuition and observation provide little help.
Our intuitions often are blind to the complexity of
tasks that we perform well with little or no con-
scious effort (COSMIDES/TOOBY 1994). The apparent
(phenomenological) ease with which we use lan-
guage to convey and consume ideas, for example,
masks the cognitive complexity that underlies even
the simplest conversation about the weather
(PINKER 1994; SPERBER/WILSON 1995).

To be effective in social domains, this intuition-
dependent approach must be replaced with an ap-
proach that specifies the tasks and sub-tasks present
in an information processing domain and that
specifies (1) what it means for a social psychological
process to be successful and (2) what specific prob-
lems an organism must solve to be successful in a
particular social domain. Evolutionary psychologi-
cal theory can provide social psychologists with a
powerful set of tools for these purposes.

Figure 1: MARR’s (1982) computational approach. Arrows rep-
resent the direction of inferences from one level to another.
The thickness of the arrow indicates the relative importance
of the associated inference process to MARR’s approach.
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The Use of Evolutionary Theory 
within a Cognitive Approach

Recent advances in evolutionary psychology enable
the application of a computational approach to so-
cial psychological domains. Computational model-
ing provides a framework for decomposing complex
psychological phenomena into the specific infor-
mation processing tasks required for the phenome-
na to occur in real-world circumstances. Evolution-
ary psychology can strengthen the computational
approach and allow its application to social phe-
nomena by supplanting the role of intuition in the
process of generating computational theories, and
by providing a theoretically grounded metric for de-
ciding when psychological processes are operating
successfully. Combining evolutionary psychologi-
cal theory with a key component of the computa-
tional approach, a task analysis, can greatly reduce
the chance of making conceptual errors when build-
ing theories of social cognitive processes.

Task analysis

A computational approach provides a heuristic for
building viable theories of cognitive processes. The
computational approach to the mind, in addition,
is an epistemological statement: Mental processes
are computational (i.e., they involve representa-
tions, operations, manipulation of symbols); the
mind ‘computes’ (HOBBES 1974; PYLYSHYN 1984). It
is useful, however, to distinguish the epistemology
of computational theory from the procedural heu-
ristic of task analysis in thinking about social cogni-
tive processes.

Adopting a task analysis involves breaking a psy-
chological process into the sub-tasks that must be
solved for that process to occur. Adopting a task anal-
ysis does not require the belief that the mind com-
putes anything in the formal sense (although this
approach often will lead to that conclusion). Nor
does it require formal computational (mathematical)
models of social cognition, or a working computer
simulation. In adopting a task analysis, one simply is
disposed toward decomposing a proposed psycho-
logical process into its constituent parts by specifying
the tasks that must be solved to reach the end state.

Using evolutionary theory

This approach involves one simple assumption:
that any proposed set of cognitive processes must be
evolvable. Because the cognitive architecture that

underlies social cognition is a product of natural
selection, it must be structured in such a way that is
consistent with this causal history. Detailed models
of the process of natural selection, including a spec-
ification of relevant selection pressures and ances-
tral environments, can provide a principled set of
tools to begin specifying the cognitive tasks that are
solved in a particular domain.

The first step in applying an evolutionarily in-
formed computational approach is to identify the
selective constraints on potential cognitive adapta-
tions in a particular domain. Game theory models
can be used profitably at this step. In the domain of
cooperation, for example, the theories of kin selec-
tion (HAMILTON 1964) and reciprocal altruism (AXEL-

ROD 1984; COSMIDES/TOOBY 1992; TRIVERS 1971) pro-
vide models of some of the constraints any set of
cognitive processes must have satisfied recurrently if
they presently guide cooperative or altruistic behav-
iors (e.g., ‘HAMILTON’s rule’; HAMILTON 1963). These
models suggest a series of sub-tasks that must be per-
formed to meet these constraints. Using these mod-
els, we can generate hypotheses about the algo-
rithms that guided cooperative behavior under
ancestral conditions. For example, in cooperation
and altruism, the uncertain nature of kinship (due
to the possibility of cuckoldry) imposes a class of
constraints that may have designed mechanisms for
evaluating the uncertainty of relatedness (DALY/WIL-

SON 1982; DEKAY 1995, 2000; EULER/WEITZEL 1996;
see below).

Studies of hunter–gatherer societies (HILL/HUR-

TADO 1996), paleontological research (TRINKAUS/ZIM-

MERMAN 1982), and reverse engineering (recon-
structing the past from examining currently existing
adaptations; DENNETT 1995; PINKER 1997) aid in iden-
tifying the environmental features available for ex-
ploitation, and in identifying the conditions under
which the proposed algorithms must have been op-
erative. The end result is a set of proposed cognitive
processes, which can (and could) solve the problem
in question, given the constraints operative in the
relevant ancestral environments (see Figure 2).

Grandparental Investment: 
An Example of an Evolutionary 
Approach to Social Cognition
DEKAY (1995, 2000) has applied an evolutionary–
cognitive approach to cooperation by developing
an analysis of the relevant evolvability constraints,
performing a task analysis, and proposing previ-
ously undiscovered psychological processes
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involved in kinship interactions. This work is pre-
sented as an example of the approach we advocate.

Evolvability constraints on 
cooperation and altruism

The first step in DEKAY’s analysis was to recognize a
universal evolvability constraint—that any set of
processes, on average and over time, must have led
to greater reproductive benefits than costs. This
general constraint applies to the evolution of any
mechanism, including those involved in coopera-
tion and altruism, and subsumes both the processes
of natural selection and sexual selection.

Step 2 in DEKAY’s analysis was to express the initial
constraint in Inclusive Fitness terms (HAMILTON

1963, 1964). That is, the reproductive costs and ben-
efits specified in step 1 include not only the costs and
benefits to the individuals directly involved in the
cooperative interaction, but also the sum of the costs
and benefits to all individuals affected by the coop-
erative interaction, times the degree of relatedness
(r) between each individual affected and each di-
rectly participating individual. Degree of relatedness
is defined as the probability that two individuals
share some genetic unit (e.g., gene) due to common
descent, or by direct generational genetic transmis-
sion. An individual’s degree of relatedness with sib-

lings, parents and children is 0.50; with grandpar-
ents it is 0.25; and with cousins it is 0.125.

Step 3 focused on the kinship aspect of these con-
straints. True relatedness is a function of kinship cat-
egory membership (e.g., sibling, parent, half-sibling,
grandparent), but also is a function of relational cer-
tainty (R), or the probability that two individuals are
related, independent of their putative kinship status.
Kinship is usually uncertain due to the possibility of
cuckoldry severing the line of descent from one in-
dividual to another. This is the case for any two in-
dividuals related, at some point in their ancestry,
through a common male. For example, two grand-
mothers can be differently uncertain about their re-
latedness to their grandchild. One grandmother,
with a grandchild by her son, is certain that her son
is her genetic kin, but is less than 100% certain that
her son’s child is actually his. The other grand-
mother, with a grandchild by her daughter, is 100%
certain that her daughter is actually hers, and that
her daughter’s child is actually her daughter’s. This
is an important aspect of kinship and must be part
of the evolvability constraints on kin-directed coop-
eration and altruism.

Step 4 in the analysis elaborated the constraint of
R to recognize that R is a function of the product of
the probability of cuckoldry in each generation sep-
arating two putatively related individuals. The result
is a detailed set of constraints that any set of mech-
anisms involved in cooperation and altruism must
have met, on average and over time, to have been
favored by selection and to exist in their current
form (see Table 2). 

Task analysis

The evolvability constraints identified by DEKAY

allow a detailed task analysis of mechanisms
involved in cooperation and altruism (see Table 3).
For example, these mechanisms must include pro-
cesses designed to identify and recognize putative
kin, and processes designed to identify and deal
appropriately with cheaters—individuals who accept
the benefits of an interaction without incurring the
costs (COSMIDES 1989; COSMIDES/TOOBY 1992). Also
included in the sub-tasks involved in cooperation
and altruism are some that previously have been
overlooked. In addition to mechanisms designed to
identify and recognize putative kin, cooperation and
altruism directed towards kin must also involve pro-
cesses designed to (1) evaluate relational certainty
(R), (2) weigh putative relatedness by R, and (3) weigh
cost/benefit evaluations appropriately.

Figure 2: An evolutionary approach to social cognition. Ar-
rows represent the direction of inferences from one level to
another. The thickness of the arrow indicates the relative im-
portance of the associated inference process to the evolution-
ary approach.
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Processes involved in kin-directed 
cooperation and altruism

If people have psychological processes designed to
assess relational certainty, and if they use these
assessments in their helping decisions, we should
see predictable patterns in grandparental invest-
ment. All else equal, mother’s mother (MoMo)
should be the most investing because she has no

uncertainty about her relationship to her daugh-
ter’s child.  Father’s father (FaFa) should be the
least investing because he is ‘doubly uncertain’—
uncertain about his relatedness to his own son,
and uncertain about his son’s relatedness to his
grandchildren. Mother’s father (MoFa) and father’s
mother (FaMo) should be intermediate in invest-
ment because each have one place in the line of

Figure 3: Relational certainty between grandparents, parents,
and children/grandchildren. Dashed lines indicate uncertain
connections due to the possibility of cuckoldry.
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Step 1: For mechanisms involved in reciprocal and unidirectional ‘altruism’ the average reproductive 
benefits (B1) must outweigh the average reproductive costs (C1).

Step 2: The reproductive benefits and costs are equal to the sums of the reproductive benefits and costs for 
all individuals (i) affected by the interaction, times the degree of relatedness (r) between the individual 
directly participating in the interaction and each individual affected (inclusive fitness).

Step 3: True relatedness (rtrue)is equal to putative relatedness (rput) times ‘relational certainty’ (R).

Step 4: Relational certainty is the product of one minus the probabilities of cuckoldry [ p (cuck) ] in each  
generation ( j ) separating two individuals.

Result:  Detailed constraints on the evolution of cooperation and altruism.  Any set of mechanisms must 
have, on average and over time, satisfied these constraints.

Table 2: An Analysis of the Evolvability Constraints on Cooperation and Altruism. 
Adapted from DEKAY (2000).
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Cognitive processes involved in cooperation and altruism 
must include mechanisms that:

1 Recognize different individuals

2 Identify kin and distinguish between individuals based 
on degree of relatedness (r)

3 Evaluate the ‘relational certainty’ of kin (DEKAY 2000)

4 Weigh degree of relatedness by relational certainty 
(DEKAY 1999)

5 Estimate the costs and benefits of an interaction to one-
self and to others

6 Weigh the costs and benefits by degree of relatedness and 
relational certainty

7 Store information about past interactions

8 Detect and punish, or exclude, cheaters (COSMIDES/TOOBY

1992)

Table 3: Results of a Task-Analysis of Social Exchange. 
Adapted from COSMIDES/TOOBY (1992) and DEKAY (2000).
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descent between them and their grandchildren
where cuckoldry could sever relatedness (see Figure
3).

If people use cues to infidelity in their assessments
of relational uncertainty, and if they are reasonably
accurate in these assessments, we can make addi-
tional predictions about grandparental investment
patterns. If women’s sexual infidelity is greater in the
grandparental generation compared to the parental
generation, FaMo should invest more than MoFa.
This is because the uncertainty for MoFa lies in his
own (grandparental) generation—he is uncertain
about his relatedness to his own daughter. FaMo is
less uncertain because her uncertainty lies in her
son’s generation. If women’s sexual infidelity is
greater in the parental generation compared to the
grandparental generation, we should expect the op-
posite investment pattern (MoFa invests more than
FaMo). If women’s sexual infidelity is equal across
generations, we should expect equal investment
from MoFa and FaMo (see Figure 3).

 In a recent study of the sexual attitudes and be-
haviors of a nationally representative sample (LAU-

MANN et al. 1994), 19.9% of women between 43 and
53 years old admitted to an extramarital affair.
These women are the approximate age of the moth-
ers of typical college students. In contrast, 12.4% of
women 53 to 63 years old admitted to an extramar-
ital affair. These women are the approximate age of
the grandparents of a typical college sample. There-
fore, among college-age subjects, we should expect
the following general pattern of investment: MoMo
> MoFa > Fa Mo > FaFa. Actual rankings by under-
graduates of their grandparents’ investment of

time, resources, and emotional closeness confirm
these predictions (DEKAY 2000; see also EULER/WEIT-

ZEL 1996, for supportive data from Germany; see
Figure 4).

If people are accurate in their assessments of the
probability of infidelity, we can also make point pre-
dictions about the relative investments of various
grandparents. Using the figures from LAUMANN et al.
(1994), we can calculate the expected ratio of invest-
ment, based on relational certainty, using mother’s
mother as the ‘standard’, because she is the only
grandparent with no uncertainty. Relational cer-
tainty (R) is equal to one minus the product of the
probability of cuckoldry in each generation separat-
ing two putative kin members. For MoFa, the single
chance for cuckoldry exists in the grandparental
generation. Since 12.4% of grandparent-aged
women reported extramarital affairs, the approxi-
mate relational certainty (R) for MoFa is 0.88, and
the expected ratio of investment between MoMo
and MoFa is also 0.88. For FaMo, the single chance
for cuckoldry exists in the parental generation. Since
19.9% of parent-aged women reported extramarital
affairs, the approximate R for FaMo is 0.80, and the
expected ratio between the investments of MoMo
and FaMo is 0.80. For FaFa, there are two chances of
cuckoldry, in both the parental and grandparental
generations, and so R for FaFa is the product of those
two probabilities, or approximately 0.70, and the ex-
pected ratio of investment between MoMo and FaFa
is also 0.70. Actual reports by undergraduates of
grandparental investment (rated on a 7-point scale)
closely match these predicted ratios (DEKAY 2000;
see Figure 5).

Figure 4: Mean rank of grandparents by grandchildren on the
dimensions of ‘emotional closeness’, ‘time spent’, and ‘re-
sources (gifts, money, etc.)’. Lower ranks mean more invest-
ment (adapted from DEKAY 1999). 
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Figure 5: Predicted and observed ratios between Mother’s
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Summary

DEKAY’s work on grandparental investment illus-
trates the advantages of using a top-down, task-ana-
lytic approach guided by evolutionary theory. The
resulting task analysis revealed previously ignored
processes that are necessary for cooperation and
altruism between related individuals. This example
represents only a first step in uncovering social cog-
nitive processes using an evolutionary approach.
Further decomposition of this domain into more
specific sub-tasks will reveal additional layers of cog-
nitive complexity. Cost/benefit evaluations, for
example, are central to cooperation between strang-
ers and between relatives (COSMIDES/TOOBY 1992;
DEKAY 1995), but the specific processes underlying
these evaluations are unknown. These examples also
are not without controversy (see, for example, SPER-

BER/CARA/GIROTTO 1995). An evolutionary approach
is one strategy for generating viable hypotheses
about cognitive domains, not a guarantee that the
resulting hypotheses will prevail over alternatives. A
computational theory limits, but still underdeter-
mines, the algorithm level of analysis and empirical
research must decide between alternative accounts
of the same phenomena.

The process of combining evolutionary and cogni-
tive approaches promises to strengthen both evolu-
tionary psychological work and social cognitive
work. Each approach has limitations that can be
avoided through the use of task analysis within an
evolutionary framework. We discuss some of these
limitations below.

Evolution without ‘Cognition’

A common criticism of evolutionary approaches to
social phenomena is that they are post hoc, or are
simply stories that are untestable. Although this crit-
icism is often misinformed, evolutionary psycholo-
gists can avoid certain pitfalls by using evolutionary
theory within the top-down system described above.
Often, these pitfalls occur because general evolu-
tionary principles are applied directly to behavior,
and bypass the psychological, or cognitive, level of
analysis.

Process versus product

A common problem with evolutionary approaches
to social phenomena is that they conflate evolution-
ary processes with evolutionary outcomes, or adap-
tations. This occurs when there is insufficient

attention paid to the task demands of a domain. For
example, ‘HAMILTON’s rule’ states that natural selec-
tion favors designs for helping genetically related
others if, on average and over time, the benefits to
the helpee, times the degree of relatedness between
the helper and helpee, are greater than the costs to
the helper (HAMILTON 1963, 1964).

HAMILTON’s rule represents a description of one as-
pect of the evolutionary process (or the conditions
under which selection might operate), but is not it-
self a model of psychological mechanisms. There is
no reason, based upon HAMILTON’s rule alone, to ex-
pect that people have processes that compute the in-
equality ‘on-line’ during social interactions. Nor is
there reason to expect that people’s behavior in any
specific instance will conform to the rule. To do so
would be to jump erroneously from a description of
the process of natural selection to features of organ-
isms. Rather, HAMILTON’s rule is best conceptualized
as an evolvability constraint on the evolution of
mechanisms involved in cooperation between re-
lated individuals. It sets conditions that processes
within the domain must satisfy to be evolvable.
There are unlimited ways to satisfy the condition,
and computing HAMILTON’s rule in each situation
and using the outcome in behavioral decisions is
only one of these possibilities. HAMILTON’s rule, when
combined with information about the past ecology
and social structure of a species, can provide the
foundation for a task analysis of the processes in-
volved in kin-directed altruism. For example, DE-

KAY’s work on grandparental investment patterns
used this approach (see above).

Sociobiology and fitness maximization

Sociobiologists view social behaviors as adaptively
patterned: Organisms currently behave in such a
way as to maximize their inclusive fitness, or their
relative genetic contribution to future generations
(ALEXANDER 1979). According to this perspective,
behavioral patterns vary across ecological and social
contexts because particular behaviors have different
fitness consequences in different contexts, and
organisms are able to assess these fitness conse-
quences and adjust their behavior in order to maxi-
mize fitness outcomes. Behavior is viewed as highly
flexible, shifting in response to shifting fitness con-
sequences.

Sociobiology has been criticized on several
grounds (BUSS 1991, 1995; SYMONS 1989; TOOBY/
COSMIDES 1990). A key problem of sociobiology is
that it (often implicitly) proposes an impossible psy-
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chology. For an organism to adjust its behavior to
maximize its inclusive fitness, it must have cognitive
processes designed to evaluate its current fitness tra-
jectory, decide if that trajectory could be improved,
associate behaviors with increases or decreases in fit-
ness, and predict the fitness outcomes associated
with changes in behavior. Fitness consequences,
however, are temporally distal to the organism. Fit-
ness is not observable by the organism because it is
determined in hindsight, based on the reproductive
outcomes of an individual’s children’s children’s…
ad infinitum. It also is not clear how the organism
might decide what to do, assuming it could deter-
mine that its current fitness trajectory was not max-
imally positive. The problem space is not sufficiently
narrow to restrict potential solutions much beyond
random trial–and–error, not a generally effective
method for living (and dying!) things.

To solve the general problem specified by sociobi-
ology—that of evaluating a current fitness trajectory
and adjusting behavior to maximize that trajectory—
a cognizing agent must solve sub-tasks that cannot
be solved within real-world constraints. A model that
proposes a set of cognitive processes that functions
to evaluate on-line fitness and adjust behavior ac-
cordingly is not a viable model.

Standard Social Science

Standard social science (SSS) is a broad label for a het-
erogeneous endeavor. A full characterization of SSS
is beyond the scope of this article, and is provided
elsewhere (TOOBY/COSMIDES 1992; WILSON 1998).
Common to variants of SSS is the assumption that
the mind is initially content-free—a blank slate
upon which experience writes, or a general-purpose
computer, with ‘culture’, ‘socialization’, or ‘learning’
writing the programs. According to SSS models,
social cognition and consequent behaviors are a
function of general learning processes that have
accumulated patterned cognitive contents (such as
schemas and scripts, association strengths, or social
roles), and have conditioned patterned behavioral
responses, over the life of an individual. This view
permeates current social science theory and
research, although it often remains implicit (SYMONS

1989; TOOBY/COSMIDES 1992; WILSON 1998).
Organisms alter their behavior partly as a result of

experience. The assumption that the mind is largely
content-free, however, encourages the belief that a
true causal process is being invoked by references to
general, content-free concepts like ‘culture’ or ‘learn-
ing’. An examination of the cognitive requirements

for even the ‘simplest’ forms of learning (i.e., classical
and operant conditioning) reveals a great deal of
complexity (GALLISTEL 1990). Simple, general ac-
counts of social phenomena fail partly because they
underspecify the complexity of social cognition. The
predominance of behaviorism, for example, crum-
bled under the weight of evidence demonstrating
that its general principles, such as equipotentiality,
could not account for the complexity of observations
(GARCIA/ERVIN/KOELLING 1966; GARCIA/KOELLING

1966).2

Advantages of an 
Evolutionary Cognitive Approach
The rigorous application of an evolutionary
approach to social cognition provides benefits that
address some of the conceptual weaknesses present
in other approaches. We elaborate these benefits
below.

An evolutionary cognitive approach forces ex-
plicit examination of the nature of the mind and
its component psychological mechanisms. Much
social psychological and sociobiological theorizing
proceeds without careful consideration of the
assumptions made about the nature of the mind.
Domain-general constructs such as ‘fitness maximi-
zation’, ‘culture’, and ‘learning’ often pass without a
rigorous examination of the model of the mind they
require (one that is equipotential and unstructured).
An evolutionary cognitive approach, by contrast,
forces an explicit description of the nature of the
mind and demands that this description be empiri-
cally and theoretically scrutinized before research
proceeds. Sociobiological and SSS notions of the
mind are limited because they assume a relatively
content-free, and hence impossible, architecture.

An evolutionary cognitive approach forces ex-
plicit examination of the adaptive tasks and sub-
tasks required in a psychological domain. By con-
sidering the computational tasks associated with a
psychological phenomenon, and by investigating
only those solutions to the specified tasks that are
possible in a real-world environment, one is pre-
vented from disguising complexity with underspeci-
fied, global concepts such as ‘socialization’, ‘culture’,
and ‘learning’. In addition, new areas of inquiry
emerge as the problem space is defined more clearly.
GALLISTEL (1990) has applied such an approach to
non-human learning and has documented numer-
ous and complex information processing sub-tasks
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that are required for ‘simple’
learning processes (e.g., repre-
sentations of the time, rate of
event occurrence).

An evolutionary cognitive
approach demands explicit
consideration of the cogni-
tive algorithms that under-
lie psychological phenome-
non. In employing this
approach, one is forced to
describe the rules by which a psychological process
operates. This results in a sustained focus on the
most appropriate level of analysis for understanding
cognition, and for describing cognitive adaptations.

An evolutionary cognitive approach prevents pro-
posing simplistic notions of causality. Decompos-
ing a psychological phenomenon into its compo-
nent processes prevents one from being lulled into
proposing or believing that the cognitive tasks per-
formed by the mind are simple, as can happen when
our intuitions overlook complex tasks that we expe-
rience as effortless. An evolutionary cognitive
approach forces one to examine the cognitive com-
plexity underlying global concepts like ‘culture’ and
‘learning’. By failing to appreciate the complexity
implied by these underspecified concepts, sociobiol-
ogy and SSS models have failed to produce models of
cognition that respect the complexity of the mind.
Consequently, sociobiology and SSS models have
stopped short of investigating the complex cogni-
tive details of social phenomena.

An evolutionary cognitive approach prevents pro-
posing impossible solutions to psychological
problems. Because it forces a decomposition of

larger information processing
problems into smaller ones,
an evolutionary cognitive
approach can expose pro-
posed solutions that are not
viable given the information
available in real-world envi-
ronments. The evolutionary
component of this approach
demands a focus on ancestral
environments, both for speci-
fying the constraints that

must be met for a task to be solved, and for evaluat-
ing whether the proposed algorithm could have
accomplished its presumed task. Sociobiological
analyses, for example, fail partly because these anal-
yses propose an impossible psychology, as fitness
consequences are too distal to be used by cognitive
processes.

Conclusion

Using an evolutionary cognitive approach is difficult
because it requires interdisciplinary knowledge. It
requires an understanding of psychology, anthro-
pology, evolutionary biology, and cognitive science.
It is increasingly clear, however, that psychological
research can profit from such an interdisciplinary,
integrated approach. This approach can help
researchers avoid the pitfalls inherent in more tradi-
tional approaches and can help psychology to
become integrated with the other life sciences.
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Notes

1 For a task as relatively simple as playing tic–tac–toe, with a
limited number of possible states (board configurations), a
simple ‘look-up’ table can suffice. Still, this look-up table
simultaneously embodies a representation of possible board
configurations as well as strategic algorithms, though they
are simple and are equal in number to the possible board
configurations themselves (e.g., if board configuration is X,
then do Y). As the problem increases in complexity, howev-
er, the efficiency of a look-up table algorithm plummets, and
algorithms are likely to profit from shortcuts or privileged
hypotheses cutting through the exhaustive solution space.

2 Domain-general, content-free theories of social cognition
also are problematic because, like sociobiology, they pro-

pose an impossible psychology. Any information-process-
ing device must solve successfully the ‘frame problem’
(PYLYSHYN 1987; TOOBY/COSMIDES 1992). As a problem space
increases (e.g., by the addition of dimensions to consider),
the number of possible solutions to consider increases ex-
ponentially. Any information-processing device (including
the human mind) must be able to limit the possibilities in
order to operate successfully in real time. This means that
the size of a problem space must be limited by imposing
‘frames’ (privileged hypotheses, domain-specific mecha-
nisms). The domain-general procedures proposed by SSS fail
to solve the frame problem and, therefore, constitute an
impossible conception of human cognitive processes.
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