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Abstract: Cognitive neuroscience, the study of brain-behavior relationships, has long 
attempted to map the brain. The discipline is flourishing, with an increasing number of 
functional neuroimaging studies appearing in the scientific literature daily.  Unlike biology 
and even psychology, the cognitive neurosciences have only recently begun to apply 
evolutionary meta-theory and methodological guidance.  Approaching cognitive 
neuroscience from an evolutionary perspective allows scientists to apply biologically based 
theoretical guidance to their investigations and can be conducted in both humans and non-
human animals.  In fact, several investigations of this sort are underway in laboratories 
around the world.  This paper and two new volumes (Platek, Keenan, and Shackelford 
[Eds.], 2007; Platek and Shackelford [Eds.], under contract) represent the first formal 
attempts to document the burgeoning field of evolutionary cognitive neuroscience.  Here, 
we briefly review the current state of the science of evolutionary cognitive neuroscience, 
the methods available to the evolutionary cognitive neuroscientist, and what we foresee as 
the future directions of the discipline.  
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Introduction 

Evolutionary Cognitive Neuroscience (ECN) integrates comparative neuroscience, 
archeology, physical anthropology, paleoneurology, cognitive primatology, evolutionary 
psychology, and cognitive, social and affective neuroscience in an effort to identify and 
describe the neural mechanisms that have been forged by selection pressures during human 
evolutionary history that define the human mind, as well as identify comparative neural 
mechanisms for cognition. In its simplest form, evolutionary cognitive neuroscience is the 
merging of the fields of evolutionary psychology and cognitive neuroscience using 
methodology from both disciplines and guidance from evolutionary meta-theory.  In this 
coalescence, the identification of neural substrates of psychological adaptations is 
paramount. A recent volume (Platek, Keenan, and Shackelford, 2007) presents the first 
comprehensive overview of this emerging discipline, which is briefly reviewed here (see 
also Platek and Shackelford, under contract).  This article consists of three major sections: 
1) historical antecedents to and current state of evolutionary cognitive neuroscience, 2) a 
brief introduction to methods available to the evolutionary cognitive neuroscientist and 
possible implementations of such methodologies, as well as references to more 
sophisticated texts on each methodology, and 3) future directions for the discipline. 

Antecedents to Evolutionary Cognitive Neuroscience 
  
Cognitive neuroscience without evolution  
 Like pre-Darwinian psychology and other social sciences, cognitive 
neuroscience without evolution will have difficulty accurately describing the functional 
workings of the human mind.  The number of articles appearing in journals such as The 
Journal of Cognitive Neuroscience, Cognitive Brain Research, Brain, Neuron, 
Neuroscience, Social Neuroscience and the Journal of Neuroscience answering questions 
about brain-behavior relationships is staggering.  What is more astounding, however, is the 
dearth of articles that present the results of evolutionarily-informed research or interpret the 
results from an evolutionary perspective.   
 A cognitive neuroscience approach to ultimate questions without evolutionary 
meta-theoretical guidance makes little sense, about as much sense as psychological science 
without evolutionary meta-theoretical guidance. This is not to say that proximate questions 
cannot be answered by cognitive neuroscience alone. For instance, these methods have 
been instrumental in providing culturally relevant information for understanding the brain 
systems implicated in reading disabilities (Price, 2005). However, an evolutionary 
perspective provides a structure from which to guide empirical investigations and 
hypothesis generation about brain-behavior relationships.  
 
Psychological mechanisms, domain specificity, and domain generality 

Evolutionary psychology assumes that an evolved psychological mechanism (and 
its corresponding neural substrates) is an information-processing module that was selected 
during a species’ evolutionary history because it reliably produced behavior that solved a 
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particular adaptive problem (Tooby and Cosmides, 1992). Evolved psychological 
mechanisms are understood in terms of their specific inputs, decision rules, and outputs 
(Buss, 1995). Each psychological mechanism evolved to take in a narrow range of 
information—information specific to a particular adaptive problem. The information (or 
input) that the organism receives signals the adaptive problem that is being confronted. The 
input (either internal or external) is then transformed into output (i.e., behavior, 
physiological activity, or input relayed to another psychological mechanism) via a decision 
rule—an “if, then” procedure.  

Tooby and Cosmides (1992) suggested that the causal link between evolution and 
behavior is made through psychological mechanisms. The filter of natural selection 
operates on psychological mechanisms that produce behavior. Natural selection cannot 
operate on behavior directly, but on the genes associated with the neural substrates that 
generate the psychological mechanisms that produce the behavior. Williams (1966) noted 
similarly: “The selection of genes is mediated by the phenotype [psychological 
mechanism], and in order to be favorably selected, a gene must produce phenotypic 
reproductive success [adaptive behavior]” (p. 25). 

The majority of psychological mechanisms are presumed to be domain-specific. 
The mind is comprised of content-dependent machinery (i.e., physiological and 
psychological mechanisms) that is presumed to have evolved to solve specific adaptive 
problems. Psychological mechanisms can also be expressed as cognitive biases that cause 
people to more readily attend to some pieces of information relative to others. This 
presumption of domain-specificity contrasts with the traditional position that humans are 
endowed with domain-general learning or reasoning mechanisms that are applied to any 
problem regardless of specific content (e.g., Atkinson and Wheeler, 2004). A system that is 
domain-general or content-independent, however, is a system that lacks a priori knowledge 
about specific situations or problem domains (Tooby and Cosmides, 1992). Such a system, 
when faced with a choice in a chain of decisions, must select from all behavioral 
possibilities (e.g., wink, jump, remember father, smile, point finger, scream). This problem 
of choosing among an infinite range of possibilities when only a vanishingly small subset 
are appropriate has been described by researchers in artificial intelligence, linguistics, and 
other disciplines (see Tooby and Cosmides, 1992, for a review).  
 Not only are there theoretical arguments against a content-independent system, 
myriad evidence for domain-specificity comes from, among other areas, evolutionary 
psychological research (e.g., Cosmides, 1989; Cosmides and Tooby, 1994; Flaxman and 
Sherman, 2000; Pinker and Bloom, 1990), cognitive research (e.g., Hirschfeld and Gelman, 
1994), studies of animal learning (e.g., Carey and Gelman, 1991; Garcia, Ervin, and 
Koelling, 1966), clinical neurological literature (e.g., Gazzaniga and Smylie, 1983; 
Ramachandran, 1995; Sergent, Ohta, and MacDonald, 1992), and most recently the arena 
of functional neuroimaging (e.g., Platek et al., 2005; Takahashi et al., 2006). Practitioners 
of evolutionary psychology note that relatively domain-general mechanisms that function, 
for example, to integrate and relay information between domain-specific mechanisms likely 
exist (e.g. attentional systems, anterior cingulated cortex, fluid intelligence, prefrontal 
cortex, etc.), but the vast majority of mechanisms are presumed to be domain-specific.   
 Some of the controversy surrounding the relative domain-specificity of the mind 
seems to be rooted in the use of the term domain. Psychologists frequently used the term to 
refer to particular domains of life, such as the mating domain, kinship domain, and 
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parenting domain. Subsequently, many have assumed that labeling a mechanism as 
domain-specific restricts the proposed mechanism to a particular domain, and if evidence 
can be garnered to show that the mechanism functions in more than one domain (e.g., the 
mating domain and the kinship domain), then it is taken as evidence for the domain-
generality of the proposed mechanism. This, however, is incorrect. A domain, when 
referring to a psychological mechanism, is a selection pressure, an adaptive problem 
(Cosmides and Tooby, 1987). Domain, then, is synonymous with problem. A domain-
specific mechanism refers to a problem-specific mechanism—a mechanism that evolved to 
solve a specific adaptive problem. Although evolutionary and cognitive psychologists use 
the term domain-specific, perhaps some confusion could be avoided if the more accurate 
term problem-specific were employed. Although some psychological mechanisms operate 
across different domains of life (e.g., face recognition, working memory, processing 
speed), they still solve specific problems. Working memory, for example, solves the 
specific problem of holding information in the mind for a brief period of time. It has been 
suggested that evolutionary and cognitive psychologists might be better off avoiding these 
contentious labels and simply describing the proposed mechanism and its function 
(personal communication, D. M. Buss January 2005).  

Unlike early psychologists and behavioral scientists (e.g., Skinner, Watson) who 
envisioned organisms as “blank slates” capable of making an infinite number of 
associations, evolutionary meta-theory is beginning to shed light on this flawed theoretical 
approach to behavior analysis (see Barkow, Cosmides and Tooby, 1992; Buss, 2005; 
Cosmides and Tooby, 2005).  In fact, many of the emerging studies are contending directly 
with this “standard social science model” of psychology; i.e. that organisms posses one or 
more general-purpose learning mechanisms and that “biology” plays little role in the 
manifestation of behavior.  Examples of some of the first psychological studies to 
demonstrate that learning was not mediated by so-called general-purpose learning 
mechanisms were published several decades ago and mark what might be referred to as the 
beginning of evolutionary thinking in psychology and a contributing factor to the 
“cognitive revolution.”     

In his landmark study, Garcia (Garcia et al., 1966) discovered that animals learned 
to avoid novel food products that made them ill in as little as one learning/conditioning 
trial—something that had not been demonstrated with any other stimulus class previously.  
Labeled conditioned taste aversion, this effect describes an adaptive problem that has since 
been demonstrated in almost every species tested (the exception to this rule appears to be 
Crocodilians, see Gallup and Suarez, 1987).  This adaptation serves an important 
function—don’t eat food that makes you ill or you might not survive to reproduce; i.e. 
being ill could result in a number of fitness disadvantages such as death, inability to avoid 
predation, inability to search and secure mates, and loss of mate value.   

In a similar discovery, DaSilva, Rachman, and Seligman (1977) demonstrated what 
he referred to as prepared learning. Prepared learning is a phenomenon in conditioning and 
can occur rapidly because of putative biological predispositions. For example, it has been 
demonstrated that it is much easier for humans (and animals) to form conditioned 
emotional responses—in this case, associative fear responses—to evolutionarily-relevant 
threats such as snakes, insects, and heights than to present-day threatening but 
evolutionarily novel stimuli.  In other words, it is easier to condition humans to develop a 
fear of snakes, spiders, and heights than it is to condition a fear of guns, cars, and knives. 
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These studies demonstrated that psychological traits, similar to the design of bodily 
organs, were crafted by evolutionary forces that allowed our ancestors to survive. The 
information-processing mechanisms designed to deal with such situations as poisonous 
food or potential threats to survival evolved as part of our ancestors’ recurrent experience 
with such situations. These studies refute a key premise of the standard social science 
model—there is no general-purpose learning mechanism. Rather, learning is a consequence 
of carefully crafted mechanisms dedicated to solving specific evolutionary problems (see 
Barkow, Cosmides, and Tooby, 1992; Pinker, 2002).  Our brains have evolved to be 
efficient problem-solvers and the problems they are designed to solve are those that our 
ancestors recurrently faced over human evolutionary history.   

Although domain-specificity seems to be the prevailing theoretical model of the 
brain in evolutionary psychology, we note that there is also support for the existence of 
domain-general mechanisms in areas of cognition and learning. Chiappe and MacDonald 
(2005) argue that the domain-general approach explains how humans may solve novel 
problems and employ novel strategies to old recurrent problems; whereas the theory of 
domain-specificity does not. Contrary to the claim that humans would have an infinite 
choice of problem solving strategies without a module to guide them, Chaippe and 
MacDonald (2005) suggest that we have evolved motivational systems that provide 
positively or negatively charged cues to aid in novel problem solving. They criticize the 
definition of adaptation put forth by Tooby and Cosmides (1992) because it includes 
“recurrence”, implying that there can be no adaptations to deal with novel problems. Their 
revised definition of adaptation is as such, “an adaptation is a system of inherited and 
reliably developing properties that became incorporated into the standard design of a 
species because it produced functional outcomes that contributed to propagation with 
sufficient frequency over evolutionary time” (Chiappe and MacDonald, 2005, p.11).  

Examples of general intelligence and innovative problem solving can be seen in 
animals as well as humans. For instance, common ravens (Corvus corax) can solve 
problems that have not been part of their evolutionary environment. Henrich (2000) 
designed a study where ravens had to use novel techniques to get food from a string. 
Results showed that the ravens were able to solve this novel problem to get the food, not 
through trial and error, but through putative “insight.” Furthermore, Anderson (2000) 
discovered that rats were able to combine the steps from separately learned tasks to solve a 
problem. Research with humans has bolstered the argument for domain-free capabilities. 
Using measures of working memory capacity such as mathematical processing and a 
reading span task Turner and Engle (1989) discovered that scores on these tasks predicted 
reading ability. These results indicate that working memory may include domain-specific 
and domain-general mechanisms involved in several distributed processing tasks (Kane, 
Bleckley, Conway and Engle, 2001; Chiappe and MacDonald, 2005). Geary (1995) has 
devised a theory that incorporates domain-specificity and general intelligence by 
differentiating between primary biological abilities and secondary biological abilities. The 
primary abilities include language and simple quantitative abilities; these are domain 
specific. Secondary abilities, such as reading and mathematics, use these primary ability 
modules in a general way to solve novel problems. Geary states, “Success at these 
biologically secondary abilities is strongly correlated with general intelligence” (as cited by 
Chiappe and MacDonald, 2005, p. 17). Modules are critical for learning and problem 
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solving, but domain-free mechanisms are key in employing information from the modules 
to solve new original problems (Chiappe and MacDonald, 2005). 

Fear acquisition has been used to support the theory of domain-specificity, as some 
fears (evolutionarily relevant fears) are easily acquired and not easily extinguished (Öhman 
and Mineka, 2001; Seligman, 1971). Hugdahl and Johnsen (1989), however, argue that 
stimuli without any evolutionary significance can “gain control of the fear system” 
(Chaippe and MacDonald, 2005, p.28). Results showed that participants demonstrated 
superior conditioning to a gun stimulus paired with a loud noise, than to snake stimuli. The 
extinction rate of the gun stimuli and the snake stimuli, when both were followed by a 
shock, was equal. Furthermore, there is evidence of two fear processing systems in the 
brain. Fear is traditionally associated with amygdala activation, especially evolutionary 
relevant fear stimuli; however, the hippocampus is activated when individuals are exposed 
to aversive unfamiliar stimuli. Öhman and Mineka (2001) suggest that the hippocampal 
activation allows the subject to take in all available information from the environment in 
order to better understand and assess the aversive stimuli. 

The social brain hypothesis argues that the brain (especially the higher primate 
brain) has evolved to its present form as a result of selection pressures imposed by the very 
social nature of the primate group structure (Dunbar, 2007; Jolly, 1969 as cited by Dunbar, 
2007; Humphrey, 1976, as cited by Dunbar 2007). Chiappe and MacDonald state, “Social 
learning systems in humans are domain general in the critical sense that they allow us to 
benefit from the experience of others, even when their behavior was not evolutionarily 
recurrent in the EEA but is effective in achieving evolved goals in the current environment” 
(2005, p. 33). Several studies have demonstrated that social learning is not confined to 
humans. Rats observing conspecifics attaining food have in turn employed the observed 
technique to obtain food (Heyes, Dawson, and Nokes, 1992). Parrots have also been able to 
socially learn non-species specific behaviors without reinforcement (Moore, 1996). Social 
learning among primates “coevolved” with increased size of the executive functions, 
increased innovative ability, as well as tool use (Reader and Laland, 2002). Chiappe and 
MacDonald claim that these findings buttress the argument for social learning having 
increased importance as species employ innovative solutions through processes such as 
working memory, fluid intelligence, and executive function, which are the foundations of 
general intelligence. 
 
Evolutionary time lags and the environment of evolutionary adaptedness 

Because evolution is an excruciatingly slow process, modern humans and their 
minds are designed for earlier environments of which they are a product. Our minds were 
not designed to solve many of the day-to-day problems of modern society but, instead, 
were designed to solve the recurring problems of our evolutionary past. Examples of 
evolutionary time lags abound: our difficulty in learning to fear modern threats, such as 
guns and cars, and our near effortless learning to fear more ancient threats, such as snakes 
and spiders (DaSilva, Rachman, and Seligman, 1977; Öhman and Mineka, 2001) children’s 
ease in learning biologically primary mathematic abilities, such as counting, and their 
difficulty in learning biologically secondary mathematic abilities, such as arithmetic 
(Geary, 1995); women will not concede to intercourse indiscriminately even though 
modern contraception can greatly minimize the reproductive costs associated with 
intercourse; our preference for sugar and fat was once adaptive due to their scarcity, but has 
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now become maladaptive. These few examples illustrate that our modern behavior is best 
understood when placed in the context of our environment of evolutionary adaptedness.  

The environment of evolutionary adaptedness (EEA) is not a place or time in 
history but a statistical composite of the selection pressures (i.e., the enduring properties, 
components, and elements) of a species’ ancestral past—more specifically, the adaptations 
that characterize a species’ ancestral past (Tooby and Cosmides, 1990). Each adaptation 
evolved due to a specific set of selection pressures. Each adaptation, in principle, has a 
unique EEA, but there likely would have been overlap in the EEAs of related adaptations. 
Tooby and Cosmides (1990) and other evolutionary psychologists, however, use 
“Pleistocene” to refer to the human EEA because this time period, lasting 1.81 to 0.01 
million years ago, was appropriate for most adaptations of Homo sapiens.  

Although our evolutionary past is not available for direct observation, the discovery 
and description of adaptations allows us to make inferences about our evolutionary past, 
and the characterization of adaptations may be the most reliable way of learning about the 
past (Tooby and Cosmides, 1990). Some adaptations provide unequivocal information 
about our ancestral past. Our cache of psychological mechanisms associated with 
navigating the social world tells us that our ancestors were a social species (e.g., Cosmides, 
1989; Cummins, 1998; Kurzban, Tooby and Cosmides, 2001; Pinker and Bloom 1990; 
Trivers, 1971). A multitude of psychological mechanisms associated with cuckoldry 
avoidance tell us that female infidelity was a recurrent feature of our evolutionary past 
(Buss, Larsen, and Westen, and Semmelroth, 1992; Buss and Shackelford, 1997; Goetz and 
Shackelford, 2006; Platek, 2003; Shackelford and Goetz, in press).  

Some adaptations, however, do not make clear (at least upon first inspection) their 
link with our ancestral past. There exists, for example, a mechanism present in the middle 
ear of all humans that is able to reduce sound intensity by as much as 30 decibels in 50 
milliseconds. The attenuation reflex, as it is known, acts by contracting muscles that pull 
the stirrup away from the oval window of the cochlea, preventing strong vibrations from 
damaging the inner ear. The attenuation reflex meets the characteristics of an adaptation 
(e.g., economic, efficient, reliable), yet it is not obvious what selection pressures drove the 
evolution of this adaptation. What specific noises did our ancestors recurrently hear that 
would create this noise reducing mechanism? That the muscles appear to contract as we are 
about to speak suggests that our own loud voices might have been the impetus for this 
adaptation. Moreover, sound attenuation is greater at low frequencies than at high ones 
(and humans speak at low frequencies), also suggesting that ululating was a recurrent 
feature of our evolutionary past. Thus, from discovering and describing adaptations, we can 
tentatively characterize aspects of our evolutionary environment. 

This is not to be taken to indicate, however, that the aim of evolutionary psychology 
is to make inferences about the past. Evolutionary psychology is not post hoc storytelling; 
its practitioners often use a deductive approach, moving from theory to data. Evolutionary 
psychologists make predictions derived from hypotheses based on middle-level theories—
e.g., Trivers’s (1972) parental investment theory—then collects data to test their 
predictions. For example, Buss et al. (1992) tested the hypothesis proposed by Symons 
(1979) and Daly, Wilson, and Weghorst (1982) that the sexes would differ in their reactions 
to a romantic partner’s sexual and emotional infidelity. Buss and his colleagues did not 
happen to collect the appropriate data, analyze the results, and develop a post hoc 
explanation for what they observed. Furthermore, claims of adaptations are typically stated 
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as tentative until the proposed adaptation has undergone rigorous hypothesis testing (see 
Schmitt and Pilcher, 2004). The inductive approach, however, should not be disregarded. 
Moving from data to theory is a common practice in all scientific enterprises (e.g., 
cosmology, geology, and physics) and is known as “explanation” (Tooby and Cosmides, 
1992). 

 
Cognitive neuroscience with evolutionary theoretical guidance 

Why do we need another discipline? Why is the ECN approach important?  Without 
evolutionary meta-theoretical guidance, cognitive neuroscience will fail to describe with 
anything but superficial accuracy the human (and animal) mind.  Cognitive neuroscience 
will simply explain proximate mechanisms (i.e., the “how”) of brain-behavior relationships 
(most often using theoretical models derived from standard social science models).  This is 
only half the equation. This approach misses the ultimate (i.e., “why”) questions of brain-
behavior relationships.  By adopting the ECN approach and directly addressing ultimate 
questions about brain-behavior relationships, scientists will be in a position to better 
describe the cognitive processes and the neural correlates that they investigate. Likewise, 
without cognitive neuroscientific methods, evolutionary psychology may not be able to 
adequately describe and understand the neurophysiological mediators to psychological 
adaptations, and hence may never be able to accurately describe the evolved nature of the 
human mind.  Without “peering” into the brain with techniques such as modern functional 
neuroimaging, evolutionary psychological investigations can only describe the cognitive 
processing of human mental characteristics. Evolutionary psychology can describe 
function, but is limited in its description of structure, and thus has no ability to relate 
function to structure, which might be important, especially in comparative investigations of 
cognitive evolution. The relationship between structure and function is inherently a 
problem of evolutionary biology; i.e. the genes that give rise to brain structure and its 
component nuclei and modularity, as well as its ability to process information, were the 
combined units of selection.  The need for an integrated science of the mind that utilizes 
evolutionary meta-theoretical guidance to cognitive neuroscientific investigations is 
overdue, but beginning to flourish. 
 Recently, application of evolutionary meta-theory has been applied directly to 
investigations of the cognitive neuroscience kind.  For example, O’Doherty and colleagues 
(2003; see also Winston et al., 2007) have begun to investigate neural correlates of facial 
attraction.  O’Doherty et al. discovered that the orbitofrontal cortex appears to be activated 
when a person finds a face attractive, which suggests that facial attractiveness activates a 
reward or approach system in the brain.  These findings have recently been extended 
(Winston et al., in press) to reveal a more distributed network of activation in the anterior 
cingulate cortex (ACC), superior temporal sulcus, and amygdala in response to evaluations 
about attractiveness. Additionally, activation in the ACC and amygdala appear to be sex-
dependent, showing increased activation in men only. These areas also are activated when 
males are asked to imagine (Takahashi et al., 2006) or observe (Rilling, Winslow, and 
Kilts, 2004) their mate engaging in infidelity, which suggests that appraisals of 
attractiveness of females by males is related to their decisions about fidelity and paternal 
certainty (see Shackelford, Pound, and Goetz, 2005, for review). This work is currently 
being extended to investigate the role of the menstrual cycle in perceptions of attractiveness 
among female participants.  Patel and Platek (in preparation) employed the new functional 
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neuroimaging technology, functional Near Infrared Spectroscopy (fNIRS), to investigate 
women’s perception of attractiveness as a function of the menstrual cycle while varying 
male facial symmetry and masculinity.  These findings reveal an interaction between 
perceptions of attractiveness and the menstrual cycle; i.e. women prefer symmetrical and 
masculine men more during the period of ovulation.  Additionally, these data show that the 
prefrontal reward centers (PFC) parallel this behavioral response; i.e. women display 
activation of primarily left ventromedial PFC to symmetrical and masculine males during 
the period of the estrous cycle when they are at greatest likelihood of conception and the 
opposite pattern when not at high likelihood of conceiving.  Together these data suggest 
that 1) there are sex differences in the neural processing of attractiveness that might be 
related to evaluations about paternity and sexual fidelity and 2) that in women, activation 
appears, at least in part, dependent on hormonal state.  

Further, Baron-Cohen and colleagues (e.g., 1985, 2001) have been instrumental in 
identifying the presence of a neural module dedicated to processing socially-relevant 
information (see also Frith and Frith, 1999).  Baron-Cohen et al. demonstrated that the 
ability to conceive of others’ mental states appears to be 1) a highly modularized 
neurocognitive process and 2) specifically affected by certain neuropsychiatric pathologies, 
namely autism (also schizophrenia, see Irani et al., 2007; Platek and Gallup, 2002).  
Patients with autism (and schizophrenia) appear to have deficits in social cognition, 
independent of deficits in general intellectual functioning. These data suggest that the 
capacity for social cognition is circumscribed and modularized and thus can be negatively 
affected independent of negative consequences in other cognitive domains. Several 
neuroimaging studies have supported the notion of a modularization of social cognition 
(e.g., Focquaert et al., unpublished data; den Ouden, Frith, Frith and Blakemore, 2005; 
Ocshner et al., 2005; Platek et al., 2004, 2006; Vollm et al., 2006). 

In an explicit test of an evolutionary psychological theory and follow-up to several 
behavioral studies, Platek et al. (2004, 2005) employed functional magnetic resonance 
imaging (fMRI) to investigate sex differences in perceptions of children’s faces as a 
function of facial resemblance. In two studies, they discovered that men, but not women, 
showed activation in left and medial prefrontal regions of the brain when viewing self-
resembling child faces. This finding is suggests that 1) men display an approach strategy 
towards children who share facial resemblance with them (e.g., Davidson, Putnam, and 
Larson, 2000) and 2) men might inhibit a generalized negative response pattern, or 
avoidance phenotype, toward children unless the child shares facial resemblance.  
 Perhaps the most exciting application of neuroscientific methods to evolutionary 
theory has been done in studies empirically testing modularity. Neuroscientific methods 
such as fMRI can subject theories and claims to rigorous falsification attempts. A very 
convincing set of psychological experiments demonstrating evolved structures dedicated to 
social interaction and exchange have come from studies conducted by Cosmides, Tooby, 
and their colleagues.  By modifying a logic problem known as the Wason Selection Task to 
reflect evolutionarily important social interactions (e.g., cheater detection), Tooby, 
Cosmides, and colleagues have demonstrated that the human mind appears to have evolved 
a cheater detection mechanism that is extremely efficient.  They have provided 
neurological evidence for a cheater detection mechanism by showing that one can incur 
impairment (i.e., brain trauma) to performance on cheater detection problems but remain 
relatively unimpaired on other types of problem solving.  Their data suggest that parts of 
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the limbic system are implicated in the ability to detect cheaters in social interactions 
(Stone, Cosmides, Tooby, Kroll, and Knight, 2002).i 
 Domain-specificity research continued as Dehaene, Piazza, Pinel, and Cohen 
(2003) examined whether the human brain has evolved with a certain “predisposition to 
represent and acquire knowledge about numbers” (p.487). They used behavioral data, 
neuropsychological evidence, and fMRI to investigate three parietal circuits for number 
processing. They discovered that the horizontal intraparietal sulcus (HIPS) region, 
associated with activation during mental arithmetic and number representation, is the most 
likely candidate for a domain-specific module. As a follow up, Shuman and Kanwisher 
(2004) tested whether or not this module was involved in nonsymbolic number processing. 
They hypothesized that if the HIPS were a module specific to the representation and 
processing of numbers then the following would be true. First, symbolic and nonsymbolic 
number tasks (greater than vs. less than) would show activation in the HIPS. Second, 
Numerical tasks should engender greater activation in the HIPS than non-numerical 
difficulty-matched tasks. Results failed to support the hypothesis. There was not significant 
brain activation evidence to provide support for the existence of a domain specific cortical 
region in the parietal lobe dedicated to the processing of symbolic and nonsymbolic 
numbers.  

These new investigations—applying cognitive neuroscientific methods to answer 
hypotheses posed from an evolutionary theoretical perspective—are bringing forth a new 
understanding of how the mind and brain evolved.  In fact, these new research programs 
are re-casting much psychological research conducted through the 20th century into the 
ECN perspective.   

 
Foundations for an evolutionary cognitive neuroscience and directions for future research 

A formal discipline of evolutionary cognitive neuroscience demands the integration 
of several branches of psychology, biology, and anthropology, including, but not limited to: 
comparative neuroscience; archeology, physical anthropology, and paleoneurology; 
cognitive primatology; evolutionary psychology; and cognitive, social, clinical, and 
affective neuroscience.  In other words, the foundation of ECN is interdisciplinary in 
nature.  The discipline has been synthesized in a recent edited volume published by the 
MIT Press (Platek, Keenan, and Shackelford, 2007).  What is apparent from the 
formulation of this volume is that for ECN to survive as a discipline, collaborations across 
disciplines are going to be necessary, and the chapters presented in Platek, Keenan, and 
Shackelford (2007) highlight this fact.  We do not aim to replicate the contents of that 
volume here, but for purposes of illustration we have reviewed some of the chapter 
contents and themes.  One will notice the application of Tinbergen’s (1963) four “Why’s” 
and proximate/ultimate dichotomy weaved throughout. This ethological framework is 
essential to the survival of ECN in that this framework forms the basis for examination of 
all behaviors from a biological perspective.  
 
Ontogeny of brains and brain size 

The prefrontal cortex, temporal cortex, parietal cortex, and striatum seem to be the 
key brain substrates underlying many of the complex cognitive processes in humans. How 
did these structures evolve, allowing humans to supercede the cognitive processes of other 
organisms, especially when it comes to the noted cognitive capacities? Finlay and 
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Darlington (1995) contend that neurogenesis is strongly related to relative need for 
structure; i.e. size of a neural substrate will be determined by the organism’s need for that 
substrate for survival and reproductive maximization strategies. Stone (2007) extends this 
thesis by suggesting that natural selection acted on two factors—neuron number and 
connectivity—to build brains with more complex cognitive capabilities. These theories 
complement each other. It has been reported that 96% of brain structure size is predicted by 
the sizes of the surrounding structures (Finlay and Darlington, 1995). Neurogenesis impacts 
brain structure, and given that humans have a longer period of prenatal development, more 
neurons are able to form. Finlay and Darlington surmise that natural selection could have 
acted on the brain through neurogenesis, but with large correlations between neighboring 
brain structure sizes, longer gestational period subsequently allows for the entire brain to 
become larger. This parallels Stone’s neurogenesis hypothesis. 

Although Finlay and Darlington, as well as Stone, show concurring and supporting 
evidence for the aforementioned theory of mammalian brain evolution, Barton and Harvey 
(2000) (also see Clark, Mitra and Wang, 2001, for a review) argue for a mosaic approach to 
brain evolution. Barton and Harvey found highly significant correlated volumetric 
evolution relationships within well documented functionally related brain systems. Thus 
they conclude that mammalian brain evolution implicated size changes focused in 
particular structures and functional systems.  

 
Hemispheric asymmetry, specialization, and handedness 

 One of the most remarkable commonalities between human and nonhuman 
primates is brain lateralization, which is implicated in language, spatial abilities, and 
handedness in humans and may exist in rudimentary forms in non-primates.  Annett’s 
(1985) right-shift theory of handedness is a well documented theory of genetic inheritance 
of handedness in humans. New research is beginning to show that non-human primates 
may posses a hand preference, which begets the question of whether handedness is related 
to hemispheric specialization of cognitive capacities. Hemispheric specialization may be an 
evolutionary step towards the modularity of higher cognitive processes in humans.  
Hopkins (2007) has been leading the investigation in handedness among non-human 
primates.  Using a paradigm called the TUBE test; he examined handedness among 
nonhuman primates and discovered lateralized processing in non-human primates, 
especially in chimpanzees.  This, he suggests, lends support to the hypothesis that 
chimpanzees might also possess lateralization of other important brain functions (e.g., 

Box 1: Outstanding research questions about the neural correlates of brain size 
development 
• Are developmental constraints responsible for a coordinated size change 

among individual brain components?  
• Did natural selection act on behavioral capacities thus causing selective size 

changes? These are not new questions. How can we use evolutionary 
cognitive neuroscience to test these hypotheses? 

• Throughout evolution why did the neocortex increase in surface area, but not 
in thickness? How is the radial unit hypothesis relevant?  

• How did social group size and social interactions impact evolution of cortical 
size and complexity? 
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communication and spatial abilities). One noteworthy and inexplicable finding illustrated 
that chimpanzees in captivity tended to exemplify handedness, whereas chimpanzees in the 
wild did not (McGrew and Merchant, 1997). Evolutionary developmental psychologist, 
Bjorklund (2006), uses data from great apes and argues that, “…our last common ancestor 
chimpanzees likely had the behavioral plasticity and sociocognitive precursors to modify 
their behavior and cognition via maternal effects toward a more human-like intelligence” 
(p.213). Perhaps the chimpanzees in captivity, as they are reared in a human influenced 
environment, tend to show increased levels of handedness due to this interaction with 
humans, who do show a very distinct preference for handedness.  

Using Annett’s (1985) theory many studies have illustrated that handedness is 
heritable. Hopkins also attempts to demonstrate a genetic expression of handedness in 
chimpanzees, but discovers that there is not a significant relationship between handedness 
in the offspring and maternal or paternal handedness. A study of handedness and birth 
order indicated that in middle-born offspring there is significant heritability of handedness 
(Hopkins and Dahl, 2000: Hopkins, Dahl and Pilcher, 2000). The significance of these 
findings for cognitive evolution is yet unknown, but under close scientific scrutiny.   

Reproduction and kin selection: Social control of reproductive efforts and success 
 Are there common neurobiological mechanisms shared among animals? While fish 

seem like unusual subjects of study for evolutionary cognitive neuroscience, according to 
Fernald (2007), species such as fish are valuable vertebrates to study because they present 
applicable models for sensory systems, brain organization, and motor outputs. Fernald’s 
(1977) research with African cichlid fish (Astatotilapia [Haplochromis] burtoni) 
demonstrates the interaction between social context and reproductive behavior and how this 
interaction shapes the brain. African cichlids are territorial. Territorial males (T males) 
have bold coloring and have control over a specific domain. This domain is enticing for 
nonterritorial male (NT) cichlids because it is only in these domains where food is 
available. NT males are therefore camouflaged and colored similarly to females to allow 
them to purloin food from T cichlid’s domains. Fraley and Fernald (1982) discovered that 
if T males are reared in a group they develop at a slower rate than T males reared alone. 
Not only are T males reared in isolation larger in body size, but also the size of their gonads 

Box 2. Outstanding research questions about the relationship between 
handedness and the evolution of higher cognition that is hemispherically 
specialized. 
• What is the relationship between domestication/enrichment/culture and 

handedness among human populations? Are there epigenetic influences on 
handedness and if so, what are they? 

• What are the ultimate benefits of handedness to an individual and within 
populations and how does this affect brain formation? Why is handedness 
heritable in middle born offspring and not others in the birth order? 

• What is the relationship across species between handedness and other 
lateralized brain functions?  

• What is the relationship between the evolution of handedness and the 
evolution of social cognitive (e.g., self-face recognition, theory of mind) 
processes that are highly lateralized in humans? 
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is larger. Fernald suggests that this is a function of having no competition for resources or 
survival. Other findings include the difference in body size, which is dependent on whether 
cichlids are raised with brood mates or with adult males (Davis and Fernald, 1990). When 
maturing among adult males, gonad growth and size is suppressed compared to those 
reared without adult males around. One of the most fascinating discoveries of the 
investigation of cichlids is the remarkable change in brain structure as a function of social  
environment. In the brain of all vertebrates there are gonadotrophin releasing hormone 
(GnRH) neurons which guide reproduction. Fernald discovered that GnRH neurons are 
eight times larger in T males as compared NT males (Davis and Fernald, 1990). Can the 
size of the GnRH neurons in the brain change depending on social environment? The 
answer appears to be yes. Moving T males into a group with larger T males, the smaller 
fish become NT males. Conversely, introducing NT males into a group of smaller NT 
males, the larger males become T males. In examining the brains of these fish (pre- and 
post-environmental change), it is evident that the size of the GnRH neurons increases in the 
dominant fish after just four weeks in their new environment. Change in social status was 
influential enough to change GnRH neuron size in the brain of cichlids. This change was 
evident in adolescents and adults (Francis, Soma and Fernald, 1993). 

 
Neural correlates of love, attachment, and mate choice  

When we talk about romantic love it is common for people to generally reference the 
heart. But, it is the brain, not the heart that is the set of romantic attachment, love, and lust. 
There appear to be distinct interconnected neural networks that govern the motivational and 
reward systems involved in romantic love (e.g., Aron, et al., 2005; Winston et al., in press). 
It is a complex system based upon very specific neurochemical relationships in the brain; 
and therefore, this system becomes vulnerable when other chemicals are introduced. Fisher 
and Thomson (2007) have investigated the potential harmful effects of serotonin-enhancing  
antidepressants. Serotonin enhancing anti-depressants can interfere with oxytocin, 
vasopressin, and dopamine in the brain producing an array of effects including emotional 
blunting, decreased obsessive thoughts about a loved one, suppression of loving feelings, 
altered feelings of attachment, lowered sex drive, as well as inability to experience orgasm 
and fertility complications. Many of the aforementioned symptoms are essential to the 
development of a romantic relationship. Ultimately, Fisher and Thomson (2007) have 
argued that antidepressants interact with the natural neurobiological correlates of attraction 
and attachment and thus have detrimental effects on one’s ability to form a stable pair-bond 
negatively impacting one’s ability to “signal genetic and psychological fitness.” The 

Box 3. Outstanding research questions about the evolutionary importance of 
neuroendocrine interactions. 

• What is the relationship between territoriality and sperm competition 
mechanisms? This type of investigation could lead to discoveries about the 
neural mechanisms involved in territoriality as well as sperm competition in 
humans. 

• Do these same mechanisms exist across species and in humans? 
• Are there effects of social group organization on neural correlates of 

territoriality? 
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impacts of these findings are interesting to consider in today’s society where anti-
depressants and other such drugs are unreservedly prescribed. 

 
Social Cognition: Mind reading and self-awareness 

The study of the evolution of social cognitive mechanisms and self-awareness in 
humans and non-human primates is contentious and represented by several different 
theories.  Santos and colleagues (2007, also Flombaum and Santos, 2005) present 
compelling evidence for the capacity of mind-reading in rhesus macaques, a capacity 
previously thought to exist only in humans and great apes.  The findings of her work may 
serve to expand our understanding of the phylogenetic distribution of neurobiological 
mechanisms involved in such capacities. These data are contrary to the thesis put forth by 
Gallup (1982) that only those organisms that could learn to recognize themselves could 
later develop a sense of other, or theory of mind (see Focquaert and Platek, 2007). The 
emerging data from cognitive neuroscience suggests that Gallup’s hypothesis is at least in 
part correct. Platek and his colleagues (2004, 2005, and 2006) and Keenan and his 
colleagues (e.g., 2001, 2003,) have been instrumental in developing this model using 
modern functional neuroimaging technologies and patient populations (see also Irani et al., 
in press). It appears that the neural substrates involved in self-recognition, namely the 
inferior frontal gyrus and inferior parietal lobe in the right hemisphere are integral to the 
development of an internal self-representational system. These substrates appear also to be 
involved in processing the mental states of others (e.g. see, Platek et al., 2004, Northoff and 
Bermpohl, 2004).  Additionally, in participants who are inefficient at social cognition, these 
substrates are recruited differently (e.g., Focquaert et al., in preparation; Platek et al., 
2005). Baron-Cohen and his colleagues (e.g., 1985, 2001) have led the way for theorizing 
about modular deficits in neuropsychiatric patients, namely patients within the autistic 
spectrum disorders, and suggest that these patient populations represent an instance of 
specific modular deficit in mind reading and self-processing and might invoke assortative 
mating for such traits along a systemizing and empathizing quotient.   

Box 4. Outstanding research questions about the neural correlates of evolved 
cognitive adaptation that are utilized during mating and mate selection.  
• What is the relationship between 5-HT (and other neurotransmitters, 

hormones, substances) and attachment? How do variances in 5-HT levels 
impact fitness? 

• What are the specific neural correlates of lust and sexual excitement? Could 
research using portable brain imaging devices be used to measure neural 
activation during foreplay, sexual intercourse, and post-copulatory 
behaviors?  

• Are there neural correlates impacted by absorption of chemicals from sperm 
post-copulatory? 
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Methods available to the evolutionary cognitive neuroscientist   
 In addition to traditional cognitive psychological methodology that typically 
employs dependent variables such as reaction times, performance (e.g., Schutzwohl and 
Koch, 2004), decision judgment tasks (e.g., Singh et al., 1993), and implicit cognitive 
responses to stimuli (e.g., Thomson et al., under review), evolutionary cognitive 
neuroscience employs methods that allow direct measurement of brain activation (i.e., brain 
electric and magnetic responses and neurovascular responses), deficits in functioning 
among patients with specific lesions and/or neurocognitive impairments, and direct 
stimulation of the brain (e.g., TMS).  Each of these methodological approaches or 
techniques offers their own degree of trade-off between potential for ecological validity and 
level of intrusion or obtrusiveness (Simpson and Cambell, 2005).  We discuss each of these 
below.  
 
Measuring brain activation 

There are currently two main ways in which brain activation can be measured—
directly using magnetoencephalography (MEG) or electroencephalography (EEG), and 
indirectly by measuring the blood oxygen-dependent neurovascular response using 
functional magnetic resonance imaging, positron emission tomography, or diffuse optical 
imaging. MEG and EEG essentially measure changes in the electrical potential of 
underlying neuronal populations.  These techniques, thus, represent a relatively direct 
measurement of brain electromagnetic activity. Both techniques provide excellent temporal 
resolution, allowing researchers to plot the time course of stimulus or event evoked 
activity.  The two techniques, however, differ drastically in several ways that can be 
optimized by the evolutionary cognitive neuroscientist appropriately. MEG, while 
providing as good temporal resolution as standard EEG using event-related potentials 
(because it measures the changes in magnetic energy of neurons), also provides fairly 
accurate spatial resolution and an easier solution to the inverse problem.  This implies that 
MEG has the ability to provide information about the time course of neuronal activation 
and a relatively close approximation of the localization of such activation.  The drawback 
to MEG is that it is significantly more expensive to purchase and maintain (on the order of 
5-10 times as expensive).  On the other hand, EEG systems are relatively inexpensive 
(approx. $50-100,000 USD).  A major drawback of EEG/ERP research is the time and 
preparation necessary to setup an experiment. For a high-density EEG measurement 
preparation time can be as long as 1.5-2 hours. This obviously draws from the experiment 

Box 5. Outstanding research questions about the evolution of social cognition. 
• What introspective based social strategies (deception, intentionality, belief, 

desire, and pretense) are driven by the evolution of self-awareness and theory 
of mind? 

• How exactly do social prostheses (Kosslyn, 2007) and the mirror neuron 
system interact with the evolution of language, spatial cognition, and self-
other action understanding? 

• Does one have to be self-aware to employ social prostheses? 
• Using the new techniques designed by Santos et al., can other animals (e.g., 

outside the primate phyla, e.g., Corvids) be shown to demonstrate self-
processing capacities? 
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by reducing participant motivation, increasing participant frustration, and limiting 
ecological validity. However, a new generation of mobile EEG/ERP systems are being 
developed, which rely on advances in electrode technology and wireless transmission of 
data.  This is an obvious advantage to the evolutionary cognitive neuroscientist because it 
now allows measurement in ambulating participants.  
 The other major techniques for observing brain activation include those 
involved in measuring the indirect blood oxygen-dependent level (BOLD) neurovascular 
response or regional cerebral blood flow and include functional magnetic resonance 
imaging (fMRI), positron emission tomography (PET), and diffuse optical 
imaging/functional near infrared spectroscopy (DOI/fNIRS).  Because PET utilizes 
radioisotopes it is not typically employed outside of the clinical domain for reasons of 
safety; i.e. participants are exposed to radiation in order to measure regional cerebral blood 
flow (rCBF).  Functional magnetic resonance imaging (fMRI) has emerged as the “gold 
standard” in cognitive neuroimaging and is used in hundreds of laboratories around the 
world.  It works on the principles of differential magnetic properties of the oxygenated and 
deoxygenated species of hemoglobin.  Homogenization of tissue is achieved by using an 
extremely strong magnet, typically 1.5 Tesla (~20,000 times the magnetic force of the 
earth’s gravitational pull) a 3 Tesla (~30,000 times the force of the earth’s gravitational 
pull).  Subsequently a radio frequency pulse is passed through the tissue which blocks the 
homogenization of tissue. Because oxy and deoxy hemoglobin have different paramagnetic 
properties the return to homogenization of tissue varies in oxygenated and deoxygenated 
blood allowing the researcher to detect a difference in levels.  fMRI is based on the premise 
that when neurons fire they use oxygen and glucose and the body compensates for the 
utilization of such substances by increasing blood flow to specific regions that have 
become activated. Thus, a relative difference in oxygenation (via paramagnetism) ought to 
be detectable in regions that are recruited for specific processing tasks. In reality the 
changes in oxygenations are very small, which is why such strong magnets are employed. 
Detection of changes in oxygenation is nearly impossible with magnets weaker than 1.5 
Tesla. fMRI, however, offers limited ecological validity.  Participants are typically asked to 
lay on their back (although new upright magnets are beginning to be used)and remain as 
still as possible (motion artifact can destroy detection of small changes in BOLD) for the 
duration of the experiment, which can last up to 2 hours, typically at least 1 hour.  The 
participant is then exposed to a set of stimuli designed to parse out a specific type or 
processing while controlling for all related neural processing.  For example, if you were 
interested in measuring the neural correlates associated with a commonly researched topic 
from evolutionary psychology, say sex differences in romantic jealousy you would want to 
control for the effects of sexual jealousy, emotional jealousy, and perhaps even non-
romantic jealousy. This allows you to set up a series of statistical (image) contrasts to 
identify regions that are uniquely activated by your stimulus of interest. Takahasi et al. 
(2006), for example, compared sexual jealousy to emotional jealousy to observe the unique 
activation associated with sexual jealousy when controlling for activations associated with 
emotional jealousy in males and females. 
 A newer method for investigating BOLD activation is diffuse optical 
imaging/functional near infrared spectroscopy (DOI/fNIRS).  DOI/fNIRS measures the 
same signal as fMRI, but does so using light. Oxygenated and deoxygenated hemoglobin 
posses different absorption coefficients in the near infrared electromagnetic spectrum, thus 
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by measuring light reflection within the 700-900 nanometer range of the electromagnetic 
spectrum a researcher can determine (using the modified Beer-Lambert Law, Chance, 
1951) the relative and absolute amount of oxygenated and/or deoxygenated hemoglobin 
present in a region of neural tissue. Researchers using fNIRS need to employ similar 
controls as those imposed on fMRI, with exception of restraining participants from moving. 
The newest generation of fNIRS devices are highly mobile and can transmit data 
wirelessly, allowing subjects to ambulate while having brain activation measured.  The 
technology is also relatively inexpensive when compared to fMRI systems which typically 
cost between $2-7 million USD.  There are only a few companies manufacturing fNIRS 
systems for research (e.g., Hitashi, Infrascan, NIRS) and the costs vary from between 
$250,000 to as low as $15,000 USD.   There are major drawbacks and limitations to this 
methodology, however.  For example, depth of light transmission is shallow. That is, 
measurements can only be made from light that passes approximately 1-1.5 centimeters 
into the head, which only allows you to measure the cortex in adults. Additionally, because 
you are using light, other tissue absorption coefficients need to be taken into account. The 
major hurdle for this drawback is hair, which if dark can eradicate any light from entering 
the skull, let alone landing on the cortex.  
 
Neuropsychological patients 

The use of neuropsychological patients with specific lesions (e.g., Gazzaniga and 
Smylie, 1983; Keenan et al., 2003; Platek et al., under review; Ramachandran, 1995; 
Sergent, Ohta, and MacDonald, 1992) is common in behavioral neurology, clinical 
neuropsychology, and cognitive neuroscience (e.g., Farah and Feinberg 2000). 
Additionally, the use of patients with neuropsychiatric disorders that appear to be 
represented by modular deficits in cognition is also common (Stone et al., 2002; Sugiura et 
al., 2000). Recently, utilization of these patients to test hypotheses from evolutionary 
cognitive neuroscience for the presence of evolved cognitive adaptations has become 
popular (e.g., Baron-Cohen et al., 2001; Stone et al., 2002).  The use of patients with 
focalized lesions allows researchers to investigate the role of specific neural substrates in a 
cognitive process that they’re interested in. A classic example is that of Paul Broca, who 
was interested in language development. He noticed, upon post-mortem inspection, that 
several of his patients who experienced language production deficits had focalized damage 
to the left inferior frontal lobe. This finding has now been confirmed by several research 
programs (including neuroimaging) over the past century and this region has come to be 
known as Broca’s Area. Similarly, Baron-Cohen et al. (1985) noticed that patients with 
autistic disorder appeared to be particularly inept at social cognitive reasoning, while 
retaining functioning in other cognitive domains (e.g., general intelligence). He (and 
others) have theorized that this specific deficit in social cognitive processing represents an 
instance of a modular deficit in an evolved domain-specific (social reasoning) cognitive 
mechanisms.  This finding has also been replicated several times over using a number of 
methodologies, including functional neuroimaging, and has been extended to other similar 
candidate populations (e.g., Irani et al., 2006). There even appears to be a genetic loading 
for the possession of such modules, which lends further support to the evolutionary 
interpretation; i.e. these modules are heritable (see Irani et al., 2006).  
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Stimulating the brain 
Transcranial magnetic stimulation (TMS) is a technique based upon Faraday’s Law 

of induction which states that an activated transducer will charge another transducer, not 
activated, but that is close in proximity and otherwise not activated. Since neurons are 
essentially electromagnetic transducers, that means that introduction of a strong 
electromagnetic pulse into the brain can result in neurons becoming activated.  This 
technique is highly invasive and demands intense screening of participants for seizure 
pathologies, but if used correctly and safely can reveal significant information about the 
functional and spatial relationship between brain and behavior. The two most common 
techniques used for TMS in cognitive neuroscience are known as single-pulse and 
repetitive. Single-pulse TMS allows a researcher to interfere with normal cognition by 
delivering a singly TMS to a region hypothesized as being implicated some process.  If the 
timing is correct, the participant will experience an inability to complete a task or set of 
tasks. Single-pulse TMS allows researchers to functionally localizeii regions of the brain 
implicated in cognitive processing. Repetitive TMS on the other hand involves delivering 
long trains of stimulation, which subsequently result in down (or up) regulation of a 
spatially localized population of neurons. This technique has been dubbed the “virtual 
lesion” technique (Pascual-Leone, Walsh and Rothwell, 2000) because the result is such 
that the region stimulated becomes under (or over) responsive.  The effect is transient and 
participants soon recover to normal, but during the time of the virtual lesion (~10-30 
minutes) the researcher can engage the participants in a number of cognitive tasks. The 
virtual lesion method is similar to testing patients with focalized lesions or brain damage, 
but there is no need to be concerned with long-term neural reorganization or the 
development of neurocognitive compensatory mechanisms.  

 
Future directions for methods in ECN: Interdisciplinary approaches 

 It is likely that the most exciting advancements in technology for understanding the 
evolved mind are going to come from interdisciplinary collaborations.  One of the most 
fertile of which, cognitive neurogenetics, is growing in popularity. Cognitive 
Neurogenetics involves researchers in cognitive neuroscience and genetics, or genomics. 
Essentially, it involves measuring brain responses as a function of allelic expression.  For 
example, possession of the val/met single nucleotide polymorphism (SNP) for the COMT 
gene is associated with less efficient frontal lobe processing, as measured using fMRI (e.g., 
Winterer et al., 2006).  The implications for such findings for the evolution of frontal lobe 
circuits involved in executive function and social cognition are currently underway.  

Conclusion 
 
 The synthesis of this broadly defined set of research programs might seem at 
first as an amalgamation of unrelated research disciplines.  However, this is in fact not the 
case.  The overarching theme of evolution, specifically brain-behavior evolution, serves to 
tie together the topics that lay at the foundation of ECN.  Although the research questions 
are quite different among evolutionary cognitive neuroscientists, the goal is the same: to 
uncover the workings and the evolutionary history of the mind.  Further, as an explicit 
extension of evolutionary behavioral neurobiology, the ECN approach aims to understand a 
large spectrum of species differences and similarities, in addition to understanding the 
unique evolved capacities of the human mind and its neurobiology. Hence, the discipline is 
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inherently comparative and should include investigations and comparisons within species 
and across species. These new studies and reinterpretations of previous findings will add 
not only to our understanding of how the brain works and how the brain and behavior 
interact, but also why the brain and behavior interact and work in ways that contribute 
meaningfully to an organism’s (human or non-human) survival or reproduction. Because of 
the synergistic combination of two vibrant fields—evolutionary psychology and cognitive 
neuroscience—the sum of which (ECN) is greater than its constituent parts, we are in the 
position to also learn more about how the brain goes awry.  For example, in Platek, 
Keenan, and Shackelford (2007), Baron-Cohen (2007) and Stevens et al. (2007) discuss 
how modular deficits in patients with autism and schizophrenia can be interpreted and best 
understood from the ECN perspective.  

We hope that this article impresses upon the reader the current drive in research 
programs designed from an ECN perspective, as well as makes clear to the reader the need 
for future research from this perspective. The ECN approach attacks investigation of the 
human mind as a modularly organized (yet clearly dependent) set of cognitive structures 
(see Barkow, Cosmides, and Tooby, 1992). We hope, in fact, that this article and the 
related volume (Platek, Keenan, and Shackelford, 2007) invigorate researchers to consider 
this new strategy for future investigations and apply this theoretical stance to research they 
might already have conducted.  The development of new laboratories and research groups 
dedicated to the ECN approach is likely.  Furthermore, by adopting an ECN approach, 
scientists will be in a position to think about uniquely human traits such as higher-level 
consciousness, theory of mind, and self-awareness. In fact, ECN might be the only 
approach that can give rise to such an understanding.  Evolutionary cognitive neuroscience 
might be the newest “science of the mind.” 
 
Received 11 November 2006; Revision submitted 07 March 2007; Accepted 09 March 
2007 
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i A complete survey of evolutionary cognitive neuroscience must include a survey of the non-human 
literature; however this survey is beyond the scope of this paper. Interested readers can consult the text 
Primate Cognition (Tomasello and Call, 1997) as well as a number of recent papers that apply the ECN 
framework (e.g., Rilling et al., 2004).  
ii Here functional localization is differentiated from spatial localization for the simple fact that TMS 
represents a causal interference with brain function, while other techniques that offer spatial resolution (e.g., 
fMRI) are correlative in nature. That is, the BOLD signal is a correlation of activity in a region of interest, or 
set of regions associated with some stimulus delivery, while TMS is the direct influence over brain function 
during delivery of stimuli. Hence, since TMS can alter behaviour it is said to measure functional localization. 


